Highly Mutagenic Exocyclic DNA Adducts Are Substrates for the Human Nucleotide Incision Repair Pathway
نویسندگان
چکیده
BACKGROUND Oxygen free radicals induce lipid peroxidation (LPO) that damages and breaks polyunsaturated fatty acids in cell membranes. LPO-derived aldehydes and hydroxyalkenals react with DNA leading to the formation of etheno(ε)-bases including 1,N(6)-ethenoadenine (εA) and 3,N(4)-ethenocytosine (εC). The εA and εC residues are highly mutagenic in mammalian cells and eliminated in the base excision repair (BER) pathway and/or by AlkB family proteins in the direct damage reversal process. BER initiated by DNA glycosylases is thought to be the major pathway for the removal of non-bulky endogenous base damage. Alternatively, in the nucleotide incision repair (NIR) pathway, the apurinic/apyrimidinic (AP) endonucleases can directly incise DNA duplex 5' to a damaged base in a DNA glycosylase-independent manner. METHODOLOGY/PRINCIPAL FINDINGS Here we have characterized the substrate specificity of human major AP endonuclease 1, APE1, towards εA, εC, thymine glycol (Tg) and 7,8-dihydro-8-oxoguanine (8oxoG) residues when present in duplex DNA. APE1 cleaves oligonucleotide duplexes containing εA, εC and Tg, but not those containing 8oxoG. Activity depends strongly on sequence context. The apparent kinetic parameters of the reactions suggest that APE1 has a high affinity for DNA containing ε-bases but cleaves DNA duplexes at an extremely slow rate. Consistent with this observation, oligonucleotide duplexes containing an ε-base strongly inhibit AP site nicking activity of APE1 with IC(50) values in the range of 5-10 nM. MALDI-TOF MS analysis of the reaction products demonstrated that APE1-catalyzed cleavage of εA•T and εC•G duplexes generates, as expected, DNA fragments containing 5'-terminal ε-base residue. CONCLUSIONS/SIGNIFICANCE The fact that ε-bases and Tg in duplex DNA are recognized and cleaved by APE1 in vitro, suggests that NIR may act as a backup pathway to BER to remove a large variety of genotoxic base lesions in human cells.
منابع مشابه
Modification of DNA repair enzymes by oxidative stress and cancer progression
Oxidative stress and lipid peroxidation (LPO) are involved in the pathogenesis of several human diseases, including cancer. LPO products react with proteins and with DNA bases to form exocyclic DNA adducts of different size and high mutagenic potency. Ethenoadducts are removed mainly by Base Excision Repair (BER) pathway, while bulky adducts of LPO products by Nucleotide Excision Repair (NER). ...
متن کاملExcision of tamoxifen-DNA adducts by the human nucleotide excision repair system.
The antiestrogen tamoxifen is used in the treatment of breast cancer and has recently been recommended as a chemopreventive drug for women at high risk for breast cancer. However, women treated with the drug have an increased incidence of endometrial cancer. It has been suggested that this endometrial cancer might result from mutagenic DNA adducts, which are formed by electrophilic tamoxifen sp...
متن کاملThe p-benzoquinone DNA adducts derived from benzene are highly mutagenic.
Benzene is a human leukemia carcinogen, resulting from its cellular metabolism. A major benzene metabolite is p-benzoquinone (pBQ), which can damage DNA by forming the exocyclic base adducts pBQ-dC, pBQ-dA, and pBQ-dG in vitro. To gain insights into the role of pBQ in benzene genotoxicity, we examined in vitro translesion synthesis and in vivo mutagenesis of these pBQ adducts. Purified REV1 and...
متن کاملChemistry and Biology of DNA Containing 1,N2-Deoxyguanosine Adducts of the α,β-Unsaturated Aldehydes Acrolein, Crotonaldehyde, and 4-Hydroxynonenal
The alpha,beta-unsaturated aldehydes (enals) acrolein, crotonaldehyde, and trans-4-hydroxynonenal (4-HNE) are products of endogenous lipid peroxidation, arising as a consequence of oxidative stress. The addition of enals to dG involves Michael addition of the N(2)-amine to give N(2)-(3-oxopropyl)-dG adducts, followed by reversible cyclization of N1 with the aldehyde, yielding 1,N(2)-dG exocycli...
متن کاملDamage of DNA and proteins by major lipid peroxidation products in genome stability.
Oxidative stress and lipid peroxidation (LPO) accompanying infections and chronic inflammation may induce several human cancers. LPO products are characterized by carbohydrate chains of different length, reactive aldehyde groups and double bonds, which make these molecules reactive to nucleic acids, proteins and cellular thiols. LPO-derived adducts to DNA bases form etheno-type and propano-type...
متن کامل